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Trimming the Least Squares Estimator in the Linear Model By

Using a Preliminary Estimator
by

David Ruppert* and Raymond J. Carroll**

Abstract

Let ﬁo
. ! 1 oS 2~
residuals Yi 54 EO’ EL

8 calculated after removing the observations with the [qgn] smallest and [an]

be an estimate of B in the linear model, Yi = X{B +e,. Define the

let 0 < a <%, and let be the least squares estimate of

largest residuals. By use of an asymptotic expansion, the limit distribution of

BL is found under certain regularity conditions. This distribution depends

A~

heavily upon the choice of EO’ We discuss several choices of EO’ with special

attention to the contaminated normal model. If go is the median regression or

~

least squares estimator then 8 is rather inefficient at the normal model. If F is
symmetric, then a particularly convenient, robust choice is to let EO equal the
average of the ath and (1-o)th regression quantiles (Koenker and Bassett,

Econometrica (1978)). Then é has a limit distribution analogous to the trimmed

B,
mean in the location model, and the covariance matrix of §L is easily estimated.
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1. Introduction. This paper is concerned with the linear model

(1.1) y = XB + z,

where y' = (yl,...,yN), X is a Nxp matrix of known constant, B' = (Bl,...,Bp)
is a vector of unknown paramcters, and z' = (zl,...,zN) is a vector of i.i.d.
random variables with distribution function F. The least squares estimator of
B is said to be non-robust because it possesses two serious disadvantages,
inefficiency when F has heavier tails than the Gaussian distribution and high
sensitivity to spurious observations. These deficiencies are closely related
and Huber (1977, p. 3) states that "for most practical purposes, 'distributional
robust' and 'outlier resistant' are interchangeable'". In the location model,
three classes of estimators have been proposed to overcome these deficiencies:
M, L, and R estimators; see Huber (1977) for an introduction. Among the
L-estimates, the trimmed mean is particularly attractive because it is easy to
compute, is rather efficient under a variety of circumstances, and can be used to
form confidence intervals (Gross (1976) and Huber (1970)). Hogg (1974) favors
trimmed means for the above reasons, and because they can serve as a basis for
adaptive estimators. Stigler (1977) applied robust estimators to historical data
and concluded that ''the 10% trimmed mean (the smallest nonzero trimming percentage
included in the study) emerges as the recommended estimator'. It is therefore
natural to seek a trimmed least squares estimator for the general linear model
which possess these desirable properties of the trimmed mean.

For the linear model, Bickel (1973) has proposed a class of one-step
L-estimators depending on a preliminary estimate of B, but, while these have good
asymptotic efficiencies, they are computationally complex and are generally not

invariant to reparameterization.
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Recently, Koenker and Bassett (1978) have extended the concept of quantiles
to the general linear model. They suggest the following trimmed least squares
estimator, EKB(Q)(= EKB): define the oth and (1-o)th regression quantiles Eﬁa)
and_ﬁ(l-a) (see their paper for a definition of regression quantile), remove from
the sample any observation whose residual fromlg(a) is negative or whose residual
from B(1-a) is positive, and calculate the least squares estimator using the
remaining observations. 1In the location model, this estimator reduces to the

a-trimmed mean. Ruppert and Carroll (1978) studied the large sample behavior of

Bys
approximately oz(a,F) (N-1 X'X)_l, where in the location model cz(a,F) is the

L A
(p fixed and N + «) and found that the variance of N* BKB(a) is

1
asymptotic variance under F of the a-trimmed mean (also normalized by N?).
In this paper we—investigats a class of estlmatorsAFhat present a third
possible method of defining a regression analogue of the trimmed mean. Specifi-

cally, let EO be a preliminary estimator. Form the residuals from §0

from the sample those observations corresponding to the [Na] smallest and [No]

an emove

largest residuals. Then the o-trimmed least squares estimator,

EL(a) (= EL), is a least squares estimator using the remaining observations.
The definition of EL was motivated by the applied statisticians' practice of

examining the residuals from a least squares fit, removing the points with large

(absolute) residuals, and recalculating the least squares solution with the

remaining observations. Generally, there is no formal rule for deciding which points
8,

do know of practitioners who have used

to remove, but is at least similar to this practice. Furthermore, the authors

éL'

Theorems 1 and 2, which are a general results allowing a wide class of prelim-

inary estimates, give asymptotic representations for EL' These representation

~

enables one to calculate the asymptotic bias (which is 0 if F is symmetric and EO

A

is unbiased) and variance of §L




When the preliminary estimate is the least squares or median regression (Ll)
estimate, two somewhat surprising conclusions emerge. First, for neither choice
is éL a multivariate analogue to a trimmed mean. Second, either choice causes
éL to be inefficient at the normal model, particularly when compared to the Koenker

and Bassett estimate or the M-estimates. For symmetric F, we show that the "right"

th

choice of a preliminary estimate is a regression analogue to averaging the o and

(l-a)th sample quantiles.

Hogg (1974, p. 917) mentions that adaptive estimators can be constructed from
estimators similar or identical to EL(a) with o a function of the residuals from

EO‘ The advantage of this class of adaptive ~stimators, he feels, is that they

"would correspond more to the trimmed means for which we can find an error struc-
ture". However, from the above results, we can conclude, that even if o is
non-stochastic, estimators of the type suggested by Hogg will not necessarily have
error structures which correspond to the trimmed mean.

The methods of this paper can be applied to estimators similar to 8 For

§L'
example, let EA(a)(= EA) be the least squares estimate after the points with the

A~

§0 are removed. In section 6 we state results

[20N] largest absolute residulas from

for EA' Their proofs are omitted, but are similar to the proofs of analogous results
for §L'

2. Notation and Assumptions. Although y, X and z in (1.1) depend upon N,
this will not be made explicit in the notation. Let e' = (1,0,...,0) (1xp) and let

I, be the pxp identity matrix. For 0 <p < 1, define gp = F-l(p).

Throughout, we will make the following three assumptions.
oA ~
Cl. N* (Bp-B) = 0,(1)
C2. Fix 0 < a <1, and define El = ga and 52 = El—a'
Assume F has a continuous positive density f in neighborhoods of &1 and Ey-

C3. Assume X.,, =1 for i =1,...,N,
il

;»z' s




(2.1) lim [N'? max [X..[] =0,
N-oo iN,jsp M)
N
(2.2) 121 Xij =0 for J = 2iversPs

i.e., the design is centered, and for Q some positive definite matrix

(2.3) 1im N1 x'x = q.

N-<o

Note taht the probability distribution of Y is unchanged if we replace B by
B+ 6e and F(.) by F(- + 6) where 6 is any real number. Because of (2.2), many

possible preliminary estimates, B., satisfy

_0,

1
2

N¥(B, - B - 0e) = 0,(1)

for some 6. In particular, the LAD (least absolute deviation or median regression)
estimate has this property (Ruppert and Carroll (1978)). In this case, we can
reparameterize so that Cl1 holds.

The residuals from the preliminary estimate B,y are

(2.4) T = ¥,

p=v; " XBez - x@E- .

1

Let r... and r,, be the [Na]th and [N(1-a)]th ordered residuals, respectively. Then

IN 2N
the estimate EL is a least squares (LS) estimate calculated after removing all

observations satisfying

(2.5) 1

or T, > Fr
i IN i

2N

Because of C2, asymptotic results are unaffected by requiring strict inequalities
in (2.5). Let a; = 0 or 1 according as i satisfies (2.1) or not, and let A be the

NxN diagonal matrix with Aii = a,. Thus

e



B (@ = (AN x'Ay,

where (X'AX) is a generalized inverse for X'AX. (Later we show that

N'l(X'AX) g (1-20)Q, whence P(X'AX is invertible) - 1.)

3. Main Results. The analysis of the asymptotic behavior of éL(a) relies

heavily on techniques developed by Ruppert and Carroll (1978). The proofs are
sketched in the appendix. Lemma 1, which may be of some interest in intself, is
an asymptotic linearity result and is a generalization of work by Bahadur (1966)
and Ghosh (1971) for the location model.

For 0 < 6 < 1, define
(3.1) we(x] =0 - I(x<0)
Lemma 1. For 6 = a or (1-a), let Ton be the [N6]th ordered residual. Then,

N
i -1,..-% ' N33R
(3.2) N (reN-ge) = f(ge) [N iZ] ‘Pe(zi'ge)]' ex N (_8_0'_@ + Op(l)

Theorem 1. Define a = ng(gz) - gl f(gl), < = (I-gjg)xi = (O,Xiz,...,xip)',

and
(3.3)  h(x) = xI(§; < x < &)) + E(I(x > &) - a) + §(I(x <) - a)

Then,

1

(3.4) (1-20)N*(8,-B) = N°* -

O 2 MBS % S 6D

o2

i=1

+ N2

nesSZ

eh(zy) + a N (1-9_9})(§0-§) + Op(l) .

i=1

For our next theorem we require another condition.
C4. For some function g,

1 o -l
N* (By-) = N7
i

e~

-1
' N By vel)

WL 330 pi 2050 . - —
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A

As is well-known, C4 holds with g(x) = x if EO is the LS estimate. By
Ruppert and Carroll (1978), Theorem 2), C4 holds with
g(x) = (f(F_l(O)))'l(% - I(x < F'I(O))) if EO is the LAD estimate. As a conse-

quence of Theorem 1, we have our main result.

Theorem 2. Assume C4. Then

L oA =L N -
(3.5) (1-20) N*(B-B) =N * § Q7' Mz, 1(5 <2, <) + ag(zy)
i=1
=4 N
+ N izl g_h(Zi) + op(l).

As a special case of corollary 1, we obtain a result of deWet and Venter

(1974).

Corollary 1. In the location model (p=1 and xi=1 for all i)

(1-20) N* B -B) = N2 § n(z,) + o_(1).
—1 = 1 P

i=1

4. Asymptotics. In this section we show the Theorem 2 leads to the basic

conclusions:

1) The intercept estimate is asymptotically unbiased if F is symmetric.

2) The slope estimates are asymptotically unbiased even if F is asymmetric.

3) The asymptotic variance of the intercept, which does not depend upon the
choice of @0, is that of the trimmed mean in the location model.

4) The asymptotic covariance matrix of the slopes depends upon @0 and, in
general, will be difficult to estimate.

Let 0 be a (p-1) x 1 vector of zeroes. By (2.2), there is a Q such that

1 0 1

é _1 0
(4.1) Q = & and Q = i
0 Q 0 Q




Moreover,
o [0 o
(4.2) N g cl= $
i=1 0 Q
and
R [0
(4.3) QN ) C; =
i=1 0

We will call the first entry of @ the intercept and the remaining entries will
be call the slopes. If we estimate @ with §L, then the asymptotic bias of the
intercept is

&2

51 x dF(x),

Eh(z) = (1-20)7" [

which is zero if F is symmetric about zero. By (3.4) and (4.3) the slope estimates
are asymptotically unbiased, even if F is asymmetric. The asymptotic variance of

L
the intercept, normalized by N?, is

(4.4) o F) » (1-20)"2 Var h(z,)

the asymptotic variance of the normalized a-trimmed in the location model. The
intercept is asymptotically uncorrelated with the slopes, and the asymptotic

covariance matrix of the normalized slopes is 6_1 oz(a,g,F) where
2 -2
(4‘5) o (arg’F) o (1‘2(1) Var(zl I(gl i Zl i Ez) +a g(zl))

We see that the asymptotic distribution of the intercept estimate does not depend
A ~ -
upon the choice of B, provided (8.-8) = 0 (N 2)
P By P By-B p(
On the other hand, we see from (3.4) that the slope estimates depend upon EO’
since the unusual situation where a = 0 is ruled out by assumption C2. Using the
Lindeberg central limit theorem and corollary 1, it is easy to show that under C4,

N*(B, -B-¢e (l-Zoz)_1 Eh(Zl)) converges in distribution to a normal law.

8

R i L ——————
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In general, large sample statistical inference based on EL will be a
challenging problem, because of the difficulties of estimating
a= (52 f(gz) - gl f(gl)). Obtaining reasonably good estimates of the density

f might take very large sample sizes.

5. A Close Analog to the Trimmed Mean. There is one choice of @. (the average

, L)
of the ath and (l-a)th ""regression quantiles'") for which the asymptotic covariance

matrix of EL is relatively simple to estimate when F is symmetric about 0. For
0 <6 <1, let Eﬁe) be the 6 the regression quantile (Koenker and Bassett (1978)).
Let £(8) = F-l(e) and define we(x) =6 - I(x <0). By theorem 2 of Ruppert and

Carroll (1978), if F has a contiruous positive density f in a neighborhood of £(8), then

-1

(L s B

(5.1) N% (B(6) - B - £(6)e) = N2 (£(£(8))" ) Q x; Vg(z; - E(®) + o (1)

i=1

Let § (RQ) equal B when B) = (B(w) + B(1-))/2. By C2 and (5.1) this B,
satisfies (C4) with
g(x) = (2 £(5))7 Y (x-E) + (2 £EN) T ¥, (x-E))
If F is symmetric, then & = -£,, £(§)) = £(£,), and therefore
(5.2) a gl =g Ix<E)+E I(x28)

By (3.5) and (5.2),

-1
Q! x; h(zy) * o (1),

1
& |

nesSZ

(5.3) (1-20) N? (B -8) = N°

i=1

and therefore by (4.4),

L -
B-® N, Q71 o’ (w,F)
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If we examine deWet and Venter's (1974) representation of the trimmed mean (cf.
corollary 1 of this paper), we see that (5.3) is a generalization of their result
to the general linear model. Therefore, this EO
Also by theorem 3 of Ruppert and Carroll (1978)

appears to be the '"correct'" choice.

Lo

(EKB‘EL) t

1
2

(5.4) N

so that asymptotically there is no difference between trimmed with this preliminary
estimate and using Koenker and Bassett's (1978) proposal. (However, (5.4) does
not necessarily hold if F is asymmetric.)

Let EL(LS) and EL(LAD) be EL when EO is the LAD and LS estimate, respectively.
Table 1 displays oz(a,g,F) for several choices of o, €, and b, and for g corre-
sponding to EL(LS)’ EL(LAD), and EL(RQ). For comparison purposes, we include the
asymptotic variance of the LS estimate, Huber's proposal 2 M-estimate, and a
one-step Hampel estimate using Huber's proposal 2 as a preliminary estimate (Huber's
(1973), (1977)). (By asymptotic variance, we mean 02 where the asymptotic covari-
ance is 02 Q_l). For discussion of the last two estimates see Carroll and Ruppert
(1979). Several conclusions emerge from Table 1.

1) EL(LS) andlg(LAD) are rather inefficient at the normal distribution.

2) EL(RQ) is quite efficient at the normal model.

3) Under heavy contamination (b large or e large) EL(LS), E{LAD), and EL(RQ)
are relatively efficeint compared with LS. Also EL(RQ) and EL(LAD) compare
well against the M-estimates, but EL(LS) does poorly compared to the
M-estimates if € = .25, b = 10, and o = .25. (Intuitively, one can expect
that when o = .25, EL(LS) will be heavily influenced by its preliminary

estimate, which estimates‘g poorly for these b and €.)
Because of 1) and 3), the practice of fitting by least squares or LAD, removing
points corresponding to extreme residuals, and computing the least squares estimate

from the trimmed sample, is not an adequate substitute for robust methods of estimation.

e A T R S T4 134 5 PO
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If, instead of removing those observations with the [Na] smallest and [Na]
largest residuals from EO’ we remove those observations with the [2Na] largest
absolute residuals, then the asymptotic variance of the intercept is the same as
that of the slopes. Specially, let EA(Q)(= EA) be the estimate formed in this

manner. Then, if F is symmetric,

6.1)  (1-20)N? (B,-8) N Q! x,{2, T(g) <2, <&)) + a(B,-8)}

[ e Bt

and if C4 holds, then
G 38 ,\ N =]
(6.2)  (1-20)N7 (By-B) =N * ] Q7 x;{z; I(§) <2, < &) +ag(Z)}

which in the location case reduces to

4

(6.3) (1-20)N? (8,-8) = N2 igl @B =0 )+ 8 g2},

The proofs are similar to those of theorems 1 and 2 and are omitted.

Since B, is particularly easy to compute in the location model, it is very

L2

suitable for Monte Carlo studies. It is hoped that such studies will indicate
the degree of agreement between the asymptotic and finite sample variances of

A

as well as B Table 2 displays the variance of QA(LS), i.e. EA with §0 the

& By
LS estimate, for sample sizes of N = 50,100,200,300, and 400. The Monte-Carlo
swindle (Gross (1973)) was employed as a variance reduction technique. One

sees from this table that convergence of the variance to its asymptotic value can

be extremely slow for some distributions, e.g. b = 10 and € = .10 or .25.

7. Conclusions. Despite their intuitive appeal, trimmed regression estimates

based on an arbitrary preliminary estimate will not be very satisfactory. However,
provided the error distribution is symmetric, there is one such estimate that is

closely analogous to the trimmed mean in the location model.
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Proposition A.1. For 6 = a or (1-2a) let W be a sequence of solutions to

Then,

Proof.

Carroll (1978) and will

N~ 2

4 (ri-uN) we(ri-uN) = min.

_I/N
NTE L vg(imwy) =
i=1

op(l).

be omitted.

The argument is very similar to that of theorem 1 of Ruppert and

Proof of lemma 1. As pointed out by Koenker and Bassett (1978), u = Ton

is a solution to

N
_Zl (r;-1) Yg(r;-w) = min,
1=

so that by Proposition A.1, for 6 = a or (l-a),

1
-

(A1) N Vg

1

ne~—12Z

i

Here, we use the fact that xie = 1.

Z, - £ - X (N (B-B) + elrgy-Eg)

1

Define the processes

-LN 5
V(&) = N°? 121 Vo(Z, - &5 - X &/NT)

and

= 1
op( )

WN(A) = VN(A) - VN(O) - E(VN(A) - VN(O)).

Following Bickel (1975) or as a special case of Lemma A2 of Ruppert and Carroll

(1978), for all M > 0,

(A2)

and

CATRGre . e 4 P Kl ST Wy + cow.

sup

W (a)| = o (1) ,
o<|[a]|<M 5 e

Bkt e«
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(A3) sup [V, (a) - V,(0) + £(§) e'A| = o_(1)
o<||a]|]sm N N a P

Further, following the method of Jureckovd (1977) or Lemma A.3 of Ruppert and

Carroll (1978), for all € > 0 there exists n, K, and N, such that

0

(A4) P{ inf |VN(A)| <n}<e} for N >N

&k
l1a]>k

By (Al) and (A4) we have that
(AS) NZ {(—BO-E) + e(reN - Ee)} = Op(l) ’
so by substituting the RHS of (A5) for A in (A3) we obtain by (Al) that
5 B A
(A6) N 121 Vg (Z;-6g) - £(8g) €' N*{(By-B) + elrgy-£)} = o (1). 0

Proposition A.2. (Lemma A.4 of Ruppert and Carroll (1978)). Let

DiN(Q Di) be a rxc matrix whose (%,k)th component is denoted by Diﬁk' Suppose

1im N1 ) D?Qk exists for all £ and k.
N-o -

Let h(x) be a function defined for all real x that is Lipschitz continuous on an

open interval containing £ and £,. For A,, A,, and A, in RP and A = (A,,A,,A,),
| 2 1 3 e e

2’

define

. N
T(A) =N"* }

1 1
' % ' 2
L Di h(Z:.l + li AS/N ) I{El + )—('i Al/N & Zi < &

L
[ 2
, *+ X! AZ/N v
Define

S(8) = T(a) - T(0) - E(T(A) - T(0))

Then, for all M > 0,

sup [Is(a)]] = o (1) .
0<||A]|M P
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Proof of theorem 1. For Al’ A2 in RP and A = (él,Az), define
u(a) = N"1 ? x: x! BCE. ©+ xV A /Nli < Z. % + x! A,/N*}
8) = N I B Tty b
and
'!2 2. ' ‘/2 ' !/z
WM T SRR i < X R

Using Proposition A.2, it is easy to show (cf. Ruppert and Carroll (1978), proof

of theorem 3) that for all M > 0,

(A7) sup lu(a) - (1-2a)Q| = o_(1)
0<||a]|<M 3 p
and
(A8) sup |W(a) - W(0) - Q(A, &, £(&,) - A, &, £(&,))]| = o (1) .
o<{[a]|<M " ~ > Tekae S B P

Then using the fact that Ei_g 1, we have

—
n

I{r1N £ <P

i— 2N I{El * —x-it(_@o-g.) + s(rlN-gl)) < Zi

|A

Ey * (UBy-B) + elry~E))}

L
and so replacing AQ by Nz((go-g) + EIrQN'El)’ for £ = 1, 2, in (A7) and A8), we

have

(A9) N1 (X'AX) = (1-20)Q + op(l)

and

(A10) N X'A(y-AX 8) = W(0) + Q{g, f(g,) N (By- B+ elryyEy))

- &y £(gp) N (By- B+ elryygy))} + 0, (1)

SR T B o AR e

e riea

Yl
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By (A9) and (A10),

(A11) N (XAG-AX 8)) = (1-20) NRQ(Bg8) + 0, (1).
By (A10), (All), and (3.2)

(A12) (1-20) N7 Q(B -B) = W(0)

4 X
+QlE, e N * Z

i

Vo BitE) - E e N Z v, (2;-;)

1

+ N2 a(I-E E')(:.S\_O_E)} + op(l) 2
Then (3.3) follows from (A12), (3.1), and the definition of W(0).

Proof of corollary 2. By (2.2), the first row of Q is e'. Therefore, the

first row of Q_1 is also e. Consequently, (I-e e') Q'1 X5 = Q'1 - Thus,

substituting (3.4) into (3.3) completes the proof.
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Table 1 - Variances of the asymptotic distribution of slope estimators-(The asymptotic

covariance matrix is Q7! multiplied by the displayed quantity).

ah- - e Estimator
Trimmed Least Squares
i B, (LAD) B (RQ)
B (s)
Huber (Least Absolute (Average of gth and 1-gth
Least Proposal Hampel (Least Squares as Deviation as Regression Quantiles as
Squares 2 One Step Preliminary Estimate) Preliminary Estimate) Preliminary Estimate)
0=.05 a=.10 0=.25 o=.05 a=.10 a=.25 o=.05 o=.10 a=.25
NORMAL 1.00 1.04 1.04 1.30 1.36 1.26 1.54 1.83 2.14 1.03 1.06 1.19
0.05 3.0 1.40 1.16 107 1.38 1.51;. 1.58 1.54 1.88 2.26 1.16 1.17 1.29
0.05 5.0 2.20 1.20 1.23 1.43 1.71° 2.15 1,51 1.87 2.28 1.20  1.20 1.31
0.05 10.0 5.95 1.23 1.28 1.68 2.66 4.81 1.46 1.85 2.30 1:.25° 1.28 1.3%
0.10 3.0 1.80 1.30 1.32 1.44 1.64 1.88 1.56° 1.93 2.39 1.32 1.30 1.39
0.10 5.0 3.40 1.40 1.47 1.45 1.96 2.99 1.46 1.90 2.44 1.46 1.38 1.45
0.10 10.0 10.90 1.49 1.61 1.48 3.32 8.09 1.34 1.85 2.47 1.65 1.45 1.49
0.25 3.0 3.00 1.90 1.94 1.79 1.97 2.74 1.82 @ 2.4 287 2.14 1.85 1.80
0.25 5.0 7.00 2.46 2.68 2.49 2.09 5.13 2:37 1.92 2.99 4.11 2.39 2.01
0.25 10.0 25.75 3.20 4.26 6.50 1.88 15.66 5.51 1.65 3.06 13.65 3.69 2.19

*Proportion of contamination

**Standard deviation of contamination

o aa

B A W Py s

2
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Table 2 - Finite and Asymptotic Variances of N2 EA(LS)
in the Location Model
PulE o N*=50 N=100 N=200 N=300 N=400
NI**=1000 NI=1000 NI=500 NI=500 NI=850 Asymptotic
NORMAL 1.31 1.36 1.37 1.32 1.35 1.36
.05 3 1.47 1.49 1.50 1.47 1.48 1.51
.05 5 1.57 1.65 1.70 1.66 1.65 1.71
.05 10 2.10 2.36 2.54 2.51 2.40 2.66
217 1.58 1.58 1.65 1.63 1.60 1.64
.10 S 1.74 1.83 1.97 1.90 1.90 1.96
.10 10 2.24 2.51 2.92 2.99 3.03 3.32
25 3 2.01 1.93 1.94 1.96 1.96 1.97
} 388 2.12 2.05 2.08 2.11 2.07 2.09
.25 10 2.98 2.42 2.14 2.13 2.11 1.88

+ ' 3 :
Proportion of contamination
**Standard deviation of contamination
* .
Sample size

**Number of Monte-Carlo simulations
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